941 research outputs found

    Nonlinear Kinetic Energy Harvesting

    Get PDF
    Abstract Harvesting of kinetic energy present in the form of random vibrations is an interesting option due to the almost universal presence of this kind of motion. Traditional generators based on piezoelectric effect are built with linear oscillators made by a piezoelectric beam and a mass used to tune the resonance frequency on the predominant frequency of the vibrations spectrum. However, in most cases the ambient random vibrations have their energy distributed over a wide spectrum of frequencies, being rich especially at low frequency. Furthermore frequency tuning is not always possible due to geometrical/dynamical constraints. In this work we present a different method based on the exploitation of the nonlinear dynamical features of bistable oscillator. The experimental results and the digital simulations show that nonlinear harvester (e.g. bistable oscillators) can overcome some of the most severe limitations of generators based on linear dynamics

    Statistics of non-linear stochastic dynamical systems under L\'evy noises by a convolution quadrature approach

    Full text link
    This paper describes a novel numerical approach to find the statistics of the non-stationary response of scalar non-linear systems excited by L\'evy white noises. The proposed numerical procedure relies on the introduction of an integral transform of Wiener-Hopf type into the equation governing the characteristic function. Once this equation is rewritten as partial integro-differential equation, it is then solved by applying the method of convolution quadrature originally proposed by Lubich, here extended to deal with this particular integral transform. The proposed approach is relevant for two reasons: 1) Statistics of systems with several different drift terms can be handled in an efficient way, independently from the kind of white noise; 2) The particular form of Wiener-Hopf integral transform and its numerical evaluation, both introduced in this study, are generalizations of fractional integro-differential operators of potential type and Gr\"unwald-Letnikov fractional derivatives, respectively.Comment: 20 pages, 5 figure

    Low-frequency internal friction in silica glass

    Full text link
    Precise low-frequency internal friction measurements on vitreous silica, taken over a wide temperature (4 K160 K the loss angle develops a distinct step-like structure followed by a plateau, both independent of ν, thus signalling the onset of a competing relaxation mechanism with much higher an activation energy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58117/2/epl_80_5_50008.pd
    corecore